

UW PACC Psychiatry and Addictions Case Conference UW Medicine | Psychiatry and Behavioral Sciences

TREATMENT OF STIMULANT USE DISORDERS

Matt Iles-Shih, MD

Addiction Psychiatry Fellow

University Of Washington & VA Puget Sound Health Care System

UW Medicine

GENERAL DISCLOSURES

The University of Washington School of Medicine also gratefully acknowledges receipt of educational grant support for this activity from the Washington State Legislature through the Safety-Net Hospital Assessment, working to expand access to psychiatric services throughout Washington State.

SPEAKER DISCLOSURES

✓ No conflicts of interest/disclosures

OBJECTIVES

- Brief overview of stimulant-related physiology
 & epidemiology
- 2. Recognizing & treating stimulant use disorders:
 - Diagnosis & management of acute effects (brief)
 - Psychotherapies (brief)
 - Pharmacotherapies
- 3. Special populations
 - ADHD in stimulant-abusing pts: to Rx, and how?

STIMULANTS:

What Substances Are We Talking About?

Cocaine

Amphetamines:

- Prescription Meds
- Methamphetamine
- Multiple other modified amphetamines

MDMA (3,4-methylenedioxy-methamphetamine)

[Note: mixed stimulant-psychodelic properties, w/↑serotonin > dopamine and abuse >> addiction.]

Others:

- Cathinones: Khat & Synthetics (e.g., "Bath Salts")
- Piperazine-like substances (various)
- Phenylaklylpyrrolidines (various)

COMMONALITIES (WHAT MAKES A STIMULANT A STIMULANT?)

NIDA (2008) Drugs, Brains, & Behavior

-Inhibit dopamine & NE reuptake

-Some also potentiate dopamine-release (e.g., amphetamines, methamphetamines, cathinones)

©2017 University of Washington

COMMONALITIES: Clinical Effects

Short-term (Intoxication & Withdrawal):

- <u>Psychiatric</u>: euphoria, 个energy & activity, alertness, insomnia, restlessness, anxiety/panic, erratic & violent behavior, paranoia, psychosis, poor judgment.
- <u>Cardiovascular</u>: vasoconstriction, arrhythmias, MI, 个HR, HTN
- Neurologic: headache, enlarged pupils, stroke, seizure, coma
- <u>Other</u>: ↑body temp, dehydration, renal injury, abdominal pain & nausea, ↓ appetite, premature delivery & placental abruption
- <u>Withdrawal</u>: Depression, fatigue, hypersomnolence, sleep disturbances, motoric phenomena, paresthesias.

Long-term:

- <u>End organ damage</u> (CNS, cardiac, renal, hepatic, other) from hypoperfusion, toxic effects, rhabdomyolysis.
- <u>Nutrition</u>: poor nutrition & weight loss.
- <u>Psychiatric</u>: Prolonged confusion, depression, anxiety, inattention, psychosis, aggression, memory, and sleep issues.
- Infection: Risk of HIV, HCV, other infectious diseases.

IDENTIFYING STIMULANT USE DO

Confirm & Characterize Stimulant Use:

Based on *pt's report*, SUDs *screening tools*, *collateral* evidence, *symptoms/signs*, *toxicology*, etc

DX: Use → impairment/distress:

- Symptoms:
 - Persistent desire or unsuccessful efforts \downarrow use.
 - Cravings
- Behaviors:
 - Using ↑ amounts or over longer period than intended.
 - Excessive time obtaining, using, recovering
 - Failure to fulfill major role obligations
 - Use despite consequences
 - Important activities given up/reduced
 - Recurrent use when physically hazardous.
 - Use despite knowledge of physical/psychological problems
- Physiologic Changes:
 - Tolerance, Withdrawal

STIMULANTS: HOW BIG A PROBLEM?

Numbers of Past Month Illicit Drug Users among People Aged 12 or Older: 2015

<u>COCAINE</u> USE AND ITS CONSEQUENCES

- 1.9 million (> 12yo) used cocaine (crack ~394K users)
- Young adults ~2.5X those > 25yrs old.
- Men >> women (2X use & death rates)
- 423,000 ED visits (2009)
- >5,000 deaths/yr annually

Figure 33. Cocaine Use Disorder in the Past Year among People Aged 12 or Older, by Age Group: Percentages, 2002-2015

SAMHSA (2015) BHTUS; SAMHSA DAWN Study (2010)

METH/AMPHETAMINE MISUSE & ITS CONSEQUENCES

- ~900,000 used Meth in priormonth
- 1.7 million misused Rx-ed stimulants in prior month
- ED visits due to illicit meth/amphet effects:

RX STIMULANT MISUSE & DIVERSION

- <u>HS students</u> w/stimulant rxs:
 - 15% shared, 7% sold meds to peers in past year
- **College students** w/stimulant rxs:
 - 61.5% shared or sold meds \geq 1 in their life
- <u>Adults</u> w/methylphenidate rxs:
 - 44% diverted, 29% misused in past month

"BATH SALTS": SYNTHETIC CATHINONES

- MOA like Meth (+ [†]5HT like MDMA)
- Easy access (historically): Internet, head shops
- Not detected on standard tox-screens
- Rates of use uncertain

STIMULANT USE DISORDERS:

TREATMENT

2014 NSDUH

ACUTE INTOXICATION & WITHDRAWAL

- Monitor for vitals/lab abnormalities
 - Hyperthermia, dehydration, renal function

Supportive

- Cardiac, Renal, Hyponatremia effects may require IVF/electrolytes, HTN control, +/-hospitalization
- Psychiatric symptoms: assess, monitor, +/ ED/hospitalization for safety
 - Agitation: Benzodiazepines
 - Hallucinations: low-dose antipsychotics for hallucinations
 - Avoid aggressive use of antipsychotics due to increased morbidity

TREATING STIMULANT USE DISORDERS

The best treatment programs provide a combination of therapies and other services to meet the needs of the individual patient.

PSYCHOTHERAPIES: A GENERAL APPROACH

↑ intensity for↑ severity or inadequate response

Outpatient addictions counseling/groups
 Intensive outpatient tx (largely group-based)
 Individual therapies (plus groups): CM, CBT
 Intensive residential, pharmacotherapy

–Note: assess & treat co-morbid psychiatric and other SUDs

TREATING STIMULANT USE DISORDERS

Components of Comprehensive Drug Abuse Treatment

PSYCHOTHERAPIES FOR STIMULANT USE

Therapy Modalities:

- Contingency Management (CM)
- Cognitive Behav. Therapy (CBT)
- Motivational Enhancement Therapy (MET)
- 12-Step Facilitation
- Family Therapy (esp. for youth)

Pros:

- Evidence-based
- Skill-building (often)
- ↑ internal motivation
- Bridge to additional tx
- Can use in multiple settings

<u>Cons:</u>

- Time, resource-intensive
- Limited workforce
- Modest effect sizes
- Not suitable for all pts (e.g., cognitive requirements)
- Unclear sustained benefit

PHARMACOTHERAPY FOR STIMULANT USE DISORDERS

Components of Comprehensive Drug Abuse Treatment

<u>Question</u>: Which medications are FDAapproved for treatment of a stimulant use disorder?

Answer: None 🛞

<u>Question</u>: Which medication(s) have shown potential benefit for sustaining remission from cocaine use?

POSSIBLE MEDICATION(S) FOR COCAINE USE DISORDER?

Evidence suggestive of likely use-reduction w/Rx:

– Disulfiram, topiramate, methylphenidate

Equivocal, to date:

Modafinil, amantadine, varenicline, naltrexone, doxazosin, NAC, TA-DC Vaccine

Ineffective (based on available data):

 Lithium, Carbamazepine, TCAs, SSRIs, bupropion, Nefazodone, Selegiline, antipsychotics

DISULFIRAM FOR COCAINE USE DISORDER

Mechanism(s) of Action:

- Inhibits dopamine β -hydroxylase, \downarrow dopamine \rightarrow norepinephrine
 - Disrupts neurotransmitter balance in reward system?
- −↑ cocaine plasma levels (MOA unknown) → cocaine more aversive?
- FDA approved for ETOH use disorder
 - ~80% of pts w/cocaine use disorder have comorbid ETOH use disorder. Can ↓ in ETOH use promote ↓ cocaine use?

Pani et al., 2010

Disulfiram & CBT for Cocaine in Outpatients

Figure 2. Frequency of cocaine use by treatment week. Effects are estimates from random regression analyses. CBT indicates cognitive behavior therapy; IPT, interpersonal psychotherapy. Carroll et al., 2004

RX OF COCAINE USE DO: OTHER (PROMISING) RX OPTIONS

• Topiramate

An antiepileptic, increases GABA activation
May be especially effective with CBT

• Amphetamine salts

- -Increases dopamine & norepinephrine availability
- –A stimulant "substition therapy" (like buprenorphine-naloxone)?
- -Mixed results (efficacy improves w/retention?)

Topiramate for Cocaine Use Disorder

- 12 wk trial w/142 Cocaine-dependent pts
- Randomized to CBT +: Placebo vs. Topiramate
 - -Target dose, weeks 6-12: 150 mg bid

Johnson et al., 2014

Topiramate for Cocaine Use Disorder:

a) Treatment Retention

b) Continuous Abstinence

	Experimental		Control			Risk Ratio	Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H	I, Random, 95% Cl	
Kampman et al. 2004	10	20	5	20	50.2%	2.00 [0.83, 4.81]	9.943030	+- B	
Kampman et al. 2013	17	83	6	87	49.8%	2.97 [1.23, 7.17]			
Total (95% CI)		103		107	100.0%	2.43 [1.31, 4.53]		•	
Total events	27		11						
Heterogeneity: Tau ² = 0				0.53); 1	²= 0%		0.01 0.1		
Test for overall effect: Z	= 2.81 (P =	= 0.005)						Control Favours Experimental	

c) Adverse Effects

	Experimental		Control		Risk Ratio		Risk Ratio	
Study or Subgroup	Events Total		Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl	
Johnson et al. 2013	60	71	57	71	98.5%	1.05 [0.90, 1.23]		
Umbricht et al. 2014	5	45	4	47	1.5%	1.31 [0.37, 4.56]		
Total (95% CI)		116		118	100.0%	1.06 [0.91, 1.23]	↓ ↓	
Total events	65		61					
Heterogeneity: Tau ² =	0.00; Chi2:	= 0.14,	df=1 (P:	= 0.71)	; I² = 0%		0.01 0.1 1 10 100	
Test for overall effect:	Z=0.71 (P	= 0.48)	1				0.01 0.1 1 10 100 Favours [experimental] Favours [control]	
							UW P	AC

Singh et al., 2015

©2017 University of Washington

RX OF COCAINE USE DO: STIMULANTS?

- 12wk, multi-center, double blinded, placebo-controlled
- 73 pts w/cocaine & heroin SUDs on methadone
- Randomized to placebo vs dextroamphetamine SR 60mg/day
- Days of cocaine-use \downarrow 26% on Rx stimulant

	Sustained-release dexamfetamine group (n=38)	Placebo group (n=35)	Exp(B) (95% Cl)	Wald χ² (df=1)	p value	Effect size
Primary outcome						
Days of cocaine use during 12-week study	44.9 (29.4)	60.6 (24.3)	1·67 (1·05 - 2·67)	4.66	0.031	d=0.58
Secondary cocaine use-related outcomes						
Longest period of consecutive cocaine abstinence (days)	17.9 (24.9)	6.7 (11.7)	2·69 (1·66 - 4·36)	16.17	<0.0001	d=0.58
Consecutive cocaine abstinence for ≥21 days	11 (29%)	2 (6%)	6·72 (1·37 - 32·97)	5.52	0.019	NNT=4·3
Days of cocaine abstinence in final 4 weeks	15.2 (10.8)	7.5 (9.1)	2·04 (1·26 - 3·31)	8.45	0.004	d=0.77
Proportion cocaine-negative urine samples in final 4 weeks	10.6 (25.1)	3.9 (17.9)	2·60 (1·14 - 5·94)	5.11	0.024	d=0·31

Data are mean (SD) or n (%), unless otherwise specified. Exp(B)=exponentiated value of regression coefficient B; odds ratio. df=degrees of freedom. d=Cohen's d, which is a standardised effect size. NNT=number needed to treat.

Table 2: Primary and secondary cocaine use-related outcomes

Nuijten et al., 2016

POP QUIZ!

<u>Question</u>: What medication has good evidence of promoting abstinence from methamphetamine among chronic users?

PHARMACOTHERAPY FOR METHAMPHETAMINE USE DISORDER:

- -No accepted treatments 🛞
- There have been small studies suggesting potential benefit from mirtazapine, bupropion
- Equivocal or negative results for naltrexone, atamoxetine, buprenorphine-naloxone, stimulants

PHARMACOTHERAPY FOR METHAMPHETAMINE USE DISORDER: MIRTAZAPINE (30MG)

PHARMACOTHERAPY FOR METHAMPHETAMINE USE DISORDER: BUPROPION (300MG)

Design:

- 12wk, 151 Meth-dep pts
- Randomized to CBT +:
 - Placebo
 - Bupropion 300mg Qday

Results:

- No diff in abstinence in total sample
- Improvement
 w/bupropion among lightusers

Shoptaw et al. (2008)

A SPECIAL CASE?

PRESCRIBING STIMULANTS FOR CO-MORBID ADHD & STIMULANT USE DISORDERS?

DOES RX OF ADHD WITH STIMULANTS IMPACT DEVELOPMENT OF SUDS?

Risk of Developing Cocaine Abuse or Dependence

PSYCHOSTIMULANTS FOR RX OF COMORBID ADHD & STIMULANT ABUSE?

Comorbid ADHD & <u>amphetamine</u> use disorders:

- Very little research
- Rx w/stimulants → no difference in ADHD or SUD (Konstenius et al 2010.)

Comorbid ADHD & <u>Cocaine</u> use disorder:

- More research
- Results suggesting...

STIMULANTS FOR RX OF COMORBID ADHD & STIMULANT ABUSE...MAYBE

Levin et al 2007:

Design:

- 14 week double-blinded, placebo-controlled trial
- 106 adult w/ADHD + Cocaine UD
- CBT + SR-MPH (60mg) vs CBT + placebo

Results:

- Decreased probability of cocaine+ UDAS w/MPH
- No difference in ADHD symptoms

STIMULANTS FOR RX OF COMORBID ADHD & STIMULANT ABUSE...MAYBE NOT

Riggs et al (2011)

Design:

- 16 wk, double-blinded placebo controlled
- 303 teens w/ADHD + active SUD
- Methylphenidate (Concerta) 72mg/day + CBT vs placebo + CBT

<u>Results:</u>

- No diff in ADHD or substance use
- Drugs of abuse: Cannabis > Alcohol > other drugs

STIMULANTS FOR COMORBID ADHD & STIMULANT ABUSE...MAYBE YES!

Levin et al 2015:

Design:

- 13 wk double-blinded, placebo-controlled 3-arm trial
- 126 adult w/ADHD + Cocaine UD
- CBT plus: Placebo vs. SR-mixed Amph (60mg) vs. SR-mixed
 Amph (80mg)

Results:

- Rx w/Stimulant ↓ prob. cocaineuse (UDAS or self-report)
- Rx w/Stimulant ↓
 ADHD symptoms

STIMULANTS FOR COMORBID ADHD & STIMULANT ABUSE – SUMMARY

Studies suggest:

- No worsening of substance of use disorders
- Unclear utility in amphetamine use disorder
- Accumulating evidence for role in cocaine use disorder
 - May ↓ cocaine use
 - May \downarrow ADHD symptoms

STIMULANTS FOR COMORBID ADHD & STIMULANT ABUSE – TREATMENT APPROACH

Tailor to individual pt:

- Actual AD/HD & of what severity?
- Has SUDs treatment been +/- optimized?
- Hx/risk of mis-use or diversion?

Would non-abusable Txs work for pt?:

- e.g., atomoxetine, bupropion, CBT

Consider long acting stimulant, as appropriate:

- ↑outcomes w/pre-rx abstinence
- Coordinate w/other providers
- Treatment agreement/contract
- Monitor (tox screens, call-backs PRN)
- Use adequate/higher doses

PRESENTATION SUMMARY:

- Stimulant misuse:
 - Modestly prevalent; often severe individual & social costs
- Acute symptom management: supportive
- Psychosocial Txs are 1st Line:
 - Conting. Management, CBT have most evidence
- Pharmacotherapies:
 - Cocaine:
 - Disulfiram; some evidence for topiramate, stimulants, others
 - Methamphetamine:
 - Small studies ~ potential benefit from mirtazapine, bupropion
 - Consider co-morbid psychiatric DOs in Rx decision /selection
- Tx of AD/HD in stimulant-abusing pts:
 - Case by case, prescribed stimulant can be helpful

QUESTIONS & DISCUSSION

MANY THANKS!

-The PACC community

-Andy Saxon, MD

-Jonathan Buchholz, MD

-Mark Duncan, MD

COCAINE USE AND ITS CONSEQUENCES

- Men (0.8%) vs. women (0.4%)
- >5,000 deaths/yr annually (2014)

SAMHSA (2015) BHTUS: Results from the 2015 National Survey on Drug Use and Health